Programme de colle de la semaine du 27 mai 2024

Cours:

- Evolution et équilibre d'un système chimique
- Les réactions d'échange de protons
- Les réactions de précipitation et de dissolution
- Les réactions d'oxydoréduction

I Nombre d'oxydation et échange d'électron(s) entre deux espèces : électrons de valence, structure de Lewis, charges formelles, nombre d'oxydation, cas O, H, halogènes, couple ox/red, ½ équation redox, équation redox, exemple de transfert direct, exemple de transfert indirect d'électron, critère d'évolution spontané : Qr, K° pour les deux transferts

II Piles électrochimiques : pile Daniell, vocabulaire, porteurs de charge, schéma conventionnel, f.e.m et sa mesure.

III Potentiel d'électrode et formule de Nernst : def du potentiel d'électrode, ESH, potentiel standard, formule de Nernst

IV Prévision des réactions chimiques d'oxydoréduction : critère d'évolution spontanée, équilibre chimique, équilibre électrique, expression de la constante d'une réaction d'oxydoréduction en fonction des potentiels standard, critère d'évolution en fonction des valeurs des potentiels d'électrode, tous les potentiels sont égaux à l'équilibre, échelle verticale des potentiels standard, notion de force d'un oxydant et de force d'un réducteur, réaction thermodynamiquement favorisée, règle du gamma. Réaction ultrafavorable : comparaison de l'avancement à l'équilibre et de l'avancement maximal.

V Vie et mort d'une pile : pile en fonctionnement, pile à l'équilibre et pile morte, capacité d'une pile, durée de vie à I constant. Mesure de la fem expérimentalement, mesure de I et signe. Voltmètre et ampèremètre (révisions)

VI Conséquence : diagrammes de prédominance et d'existence en oxydoréduction (avec axe vertical), concentration et pression aux frontières, détermination d'un potentiel standard à partir de deux autres (diagramme de Latimer introduit), détermination d'un potentiel standard faisant intervenir un précipité (force d'un oxydant, force d'un réducteur)

VII Les différentes électrodes : position du problème, mesure de potentiel, ddp, életrode de 1^{ère} espèce, ESH, de 2^e espèce (ECS, électrode de verre), électrode 3^e espèce, métal inerte

VIII Titrage potentiométrique, équivalence, ½ équivalence, double équivalence, retrouver des potentiels standard.

Les diagrammes potentiel-pH

I Allure générale : n.o. attribution des domaines, nature des frontières et conventions aux frontières

II Construction de digramme E-pH sur l'exemple de l'élément fer : espèces, conventions, frontières verticales, digramme primitif, frontières horizontales et obliques, continuité des frontières, tracé

III Lecture et utilisation des diagrammes E-pH : retrouver des constantes de réaction, des potentiels standard, interpréter et retrouver une pente, fuseau sur un diagramme : médiamutation et dismutation, espèces à prendre en compte

Exercices:

oxydoréduction : s'assurer dans un premier temps que les étudiants savent retrouver un n.o. et savent correctement écrire les ½ équations ou les équations d'oxydoréduction en milieu acide et en milieu basique. Puis des exercices sur les piles, faire utiliser le plus souvent possible l'équation de Nernst qui est la seule nouvelle véritable (admise), exercices de titrage potentiométrique. Diagramme E-pH : attribuer des domaines, retrouver n.O, diagrammes primitifs, retrouver des constantes via les frontières, retrouver des pentes, médiamutation et dismutation

Attention! Toute complexation est entièrement hors programme cette année!